Pulse polarization evolution and control in the wake of molecular alignment inside a filament.
نویسندگان
چکیده
The polarization evolution and control of a femtosecond laser pulse in the wake of molecular alignment inside a laser filament was investigated. A weak probe pulse was delayed with respect to the field-free revivals of the pre-excited rotational wave-packets created by an infrared filamenting pulse in nitrogen gas. 30° was set between the pump and probe's initial linear polarization directions in order to control the output probe's polarization ellipse. The detailed physical response of the probe's polarization states was analyzed in the wake of alignment and dephasing of molecular N(2). The probe's polarization was modulated by varying the retarded time between the pump and probe pulses.
منابع مشابه
Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments
The filamentation of femtosecond laser pulses in solids, liquids, and gases, accompanied by plasma generation, is rich in nonlinear physics and applications [1]. The recent experimental demonstration that quantum molecular rotational revivals in the atmosphere [2] can have a dominant effect on filament propagation has accompanied a resurgence of interest in filamentation and applications [3]. T...
متن کاملSimulations of femtosecond atmospheric filaments enhanced by dual pulse molecular alignment
A laser pulse propagating through the atmosphere self-focuses due to the nonlinear index of refraction modifications from the instantaneous electronic and delayed rotational responses of the air molecules. If the pulse power is sufficient, the focused pulse intensity can surpass the ionization threshold, resulting in a plasma filament. The balance between defocusing due to plasma refraction and...
متن کاملField-free molecular alignment control of filamentation
With an approach of controlling the nonlinearity of medium rather than the light field, the effect of field-free molecular alignment on filamentation and resulting white-light generation is studied. This is done by measuring the rotational wavepacket evolution of nitrogen molecules after passing of a femtosecond laser pump pulse by observing the nonlinear propagation dynamics of a variably dela...
متن کاملQuantum molecular lensing of femtosecond laser optical/plasma filaments
The long-range filamentary propagation of intense femtosecond pulses in atmosphere has been observed for the first time to be strongly effected by quantum rotational wave packets. A two-pulse experiment shows that a filamenting probe pulse can be steered and trapped in or destroyed by the rotational alignment wake following a pump filament. © 2009 American Institute of Physics. DOI: 10.1063/1.3...
متن کاملEffects of intense laser pulse properties on wake field acceleration in magnetized plasma: Half-Sine Shape (HSS) and Gaussian Shape (GS) pulses
In this paper, we have simulated the excitation of wake fields in the interaction of an intensive laser pulses having Half-Sine and Gaussian time envelopes with a fully ionized cold plasma using particle in cell (PIC) method. We investigated the dependency of wake filed amplitude to different laser and plasma parameters such as laser wavelength, pulse duration and electron number density. In ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2015